版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 中文翻譯:</b></p><p><b> 露天礦邊坡監(jiān)測技術(shù)</b></p><p> 摘要:巖石開挖會(huì)引起巖體的反應(yīng)運(yùn)動(dòng)。如果這個(gè)運(yùn)動(dòng),使得邊坡失穩(wěn),但是被及時(shí)、準(zhǔn)確地監(jiān)測到,那么意外事故,設(shè)備的破壞,礦石儲量損失,礦山的損失甚至是生命,這樣的后果在露天礦邊坡失穩(wěn)時(shí)是可以被避免的。激光掃描儀,全站儀,裂紋米
2、技術(shù),目測和最近的監(jiān)測雷達(dá)都是能夠用來監(jiān)測露天礦邊坡位移的一些技術(shù)。本文回顧了在露天礦開挖運(yùn)動(dòng)時(shí)諸如露天坑或露天開采時(shí)邊坡監(jiān)測技術(shù)的重要性。對這些技術(shù)的優(yōu)點(diǎn)和弱點(diǎn)也進(jìn)行了討論。本文的結(jié)論是,一個(gè)全面的邊坡監(jiān)測項(xiàng)目在一個(gè)有著巨大潛在邊坡穩(wěn)定危險(xiǎn)的露天礦是很有必要的。另一方面,若該邊坡的穩(wěn)定時(shí)間很短,兩個(gè)或更多的技術(shù)組合在淺露天礦或深露天礦山也是有必要的。從本質(zhì)上講,每個(gè)礦山地質(zhì)情況各不相同,在決定用哪種適用的監(jiān)測技術(shù)之前,應(yīng)該認(rèn)真分析影響
3、其穩(wěn)定性的本質(zhì)因素。</p><p> 簡介 不論是露天或地下,在一個(gè)礦山開采時(shí)采礦活動(dòng)會(huì)帶來巖體中體積、應(yīng)力和應(yīng)變的變化。當(dāng)變形超過了巖石強(qiáng)度控制的范圍內(nèi),開采挖掘就會(huì)產(chǎn)生不穩(wěn)定因素。邊坡穩(wěn)定性的最重要的管理手段,是因?yàn)橛幸粋€(gè)規(guī)定好的邊坡監(jiān)測方案。這項(xiàng)工作還定義為對一個(gè)穩(wěn)定的露天礦巖石邊坡穩(wěn)定性的監(jiān)測記錄工作[1]。監(jiān)測會(huì)定期和自動(dòng)測量參考點(diǎn)的活動(dòng)區(qū)域以確定變形量。經(jīng)常性的監(jiān)測會(huì)給予警告,對于保護(hù)人身
4、和設(shè)備安全是必要的。巖土工程設(shè)計(jì)可以得到改進(jìn)以增加安全性,適當(dāng)?shù)墓ぷ髌脚_設(shè)計(jì)可以得到改善以盡量減少落石的危險(xiǎn)。不過,即使保守的斜坡坡度設(shè)計(jì)由于未知的地質(zhì)構(gòu)造、異常天氣、地震沖擊也可能會(huì)遇到意外情況。未預(yù)料到的任何數(shù)額的巖石運(yùn)動(dòng)可能嚴(yán)重阻礙采礦作業(yè),造成重大安全問題或?yàn)楣綶2]造成大的經(jīng)濟(jì)損失。</p><p> 斜坡穩(wěn)定性監(jiān)測必要性的主要原因是:</p><p> (1)用來檢驗(yàn)礦山
5、設(shè)計(jì)。在這種情況下,邊坡監(jiān)測可為后來的提高或降低邊坡角的工作作為基礎(chǔ),由此可產(chǎn)生經(jīng)濟(jì)和安全利益。邊坡測量手段也可用于作為今后礦山的設(shè)計(jì)依據(jù);</p><p> (2)為露天礦生產(chǎn)和管理人員的穩(wěn)定狀態(tài)提供技術(shù)保證;</p><p> (3)對于不穩(wěn)定的區(qū)域作為一個(gè)警告系統(tǒng);</p><p> (4)對不穩(wěn)定區(qū)域可測出變形運(yùn)動(dòng)的速度;</p><
6、;p> (5)作為一個(gè)主要的斜坡穩(wěn)定性風(fēng)險(xiǎn)的管理工具。因?yàn)檫吰率Х€(wěn)在露天礦會(huì)造成嚴(yán)重的經(jīng)濟(jì)損失,對于在工作不穩(wěn)定的地區(qū),為保障工人和設(shè)備的安全采取特殊的爆破預(yù)防措施或撤離作出管理決策,邊坡監(jiān)測是必不可少的基礎(chǔ)工作;</p><p> 總之邊坡監(jiān)測項(xiàng)目的三個(gè)主要目標(biāo)是:保證安全的操作方法,提供不穩(wěn)定因素的預(yù)先信號,提供更多有關(guān)斜坡運(yùn)動(dòng)的巖土工程信息。</p><p><b&g
7、t; 邊坡監(jiān)測步驟</b></p><p> 邊坡監(jiān)測過程通常分為五個(gè)步驟。第一步是監(jiān)測需要。它是把建立目標(biāo),需要,優(yōu)勢(包括經(jīng)濟(jì)和安全優(yōu)勢),研究歷史問題作為個(gè)案研究,最后編寫決策者的監(jiān)測要求,并確定可以預(yù)期目標(biāo)的報(bào)告。第二步是建立項(xiàng)目要求,包裹坑的設(shè)計(jì)和風(fēng)險(xiǎn)評估。這一結(jié)果將陳述失穩(wěn)的可能性和最有可能導(dǎo)致失穩(wěn)的變量因素。第三步將考慮到這些變量因素,并且考慮到在今后使用和執(zhí)行監(jiān)測系統(tǒng)時(shí),如何設(shè)計(jì)監(jiān)
8、控系統(tǒng)。第四步是實(shí)際測量和現(xiàn)場數(shù)據(jù)記錄。測量技術(shù)和頻率,準(zhǔn)確度,精密度和人員的責(zé)任在這個(gè)階段非常重要。幸運(yùn)的是,這在設(shè)計(jì)監(jiān)測系統(tǒng)時(shí)會(huì)被考慮到。第五,也是最后一步就是分析和報(bào)告監(jiān)測數(shù)據(jù)。整個(gè)監(jiān)測過程包括結(jié)果的報(bào)告和一系列事件,決策,設(shè)計(jì)變更和成本效益分析的記錄。</p><p><b> 表面監(jiān)測</b></p><p> 表面測量涉及到以下技術(shù):監(jiān)測網(wǎng)絡(luò)和張裂縫映
9、射。</p><p> 監(jiān)測網(wǎng)絡(luò)。一項(xiàng)監(jiān)測網(wǎng)絡(luò)通常是在預(yù)期不穩(wěn)定的邊坡的區(qū)域設(shè)置一個(gè)或多個(gè)控制點(diǎn)的目標(biāo)棱鏡來作為測站。這些測站應(yīng)設(shè)在靠近坑的上部,這樣使所有棱鏡可以很容易地被看到,該站還必須在地面上處于完全穩(wěn)定。電子全站儀放置在監(jiān)測站上(設(shè)置在一間小屋內(nèi)),定期從測站通過棱鏡測量角度和距離來研究邊坡的歷史運(yùn)動(dòng)。</p><p> 全站儀所收集的數(shù)據(jù)從坑的邊緣通過電臺傳輸?shù)秸{(diào)查辦公室,那
10、里有配備了相應(yīng)軟件的計(jì)算機(jī)。數(shù)據(jù)進(jìn)入計(jì)算機(jī)后進(jìn)行處理分析來建立獨(dú)立的棱鏡定位。通過合并溫度氣壓傳感器收集的數(shù)據(jù),大氣變化可以得到矯正。有關(guān)斜坡原來的位置監(jiān)測目標(biāo)發(fā)生的變化通過軟件可以計(jì)算處理,同時(shí)以圖形格式顯示。大地測量監(jiān)測系統(tǒng)(GEOMOS)是一個(gè)典型的、每天24小時(shí)運(yùn)行的邊坡監(jiān)測網(wǎng)絡(luò)。該系統(tǒng)分為三個(gè)部分:數(shù)據(jù)采集,數(shù)據(jù)傳輸,數(shù)據(jù)處理和分析[1]。請注意,光學(xué)經(jīng)緯儀現(xiàn)在很少用于邊坡監(jiān)測使用,由于其效率低和觀察角度時(shí)往往有很大的大氣折射
11、誤差[5]。邊坡監(jiān)測調(diào)查系統(tǒng)的一個(gè)主要問題是由塵埃和煙霧等大氣因素造成的誤差。人為失誤,棱鏡損害或測站的移動(dòng)同樣可以影響測量精度。儀器和反射裝置設(shè)置不正確也會(huì)帶來誤差。在一些地方,棱鏡丟失也是值得注意的。</p><p> 張裂縫映射。斜坡頂部形成的裂縫是一個(gè)明顯的不穩(wěn)定的標(biāo)志。測量和監(jiān)測裂縫的寬度和裂紋擴(kuò)展方向的變化是為了確定不穩(wěn)定區(qū)域的范圍?,F(xiàn)有的裂縫應(yīng)涂好或標(biāo)記,這樣新的裂縫在隨后的檢查可以很容易地鑒定出
12、來。張裂縫測量就是在裂縫的兩側(cè)都用樁支撐,同時(shí)使用調(diào)查卷尺或桿來測量分離。</p><p> 另一個(gè)常用監(jiān)測裂紋運(yùn)動(dòng)的方法是用便攜式有線延伸儀。最常見的組成是由在地面的不穩(wěn)定的部分的電線錨,與在后面張裂縫穩(wěn)定的地面上設(shè)置的監(jiān)視器和滑輪站。該線運(yùn)行在一個(gè)滑輪的上方,在另一端懸一重物。當(dāng)不穩(wěn)定的地面部分移動(dòng)遠(yuǎn)離滑輪站,重物將移動(dòng),位移也可以通過電子或手動(dòng)記錄。長度太大的線由于下降或熱膨脹產(chǎn)生誤差,所以調(diào)整和修正很有
13、必要。引伸線的長度應(yīng)限制在大約60米(一九七英尺)使由于下垂引起的誤差保持在最小[7]。</p><p> 目前廣泛使用的延伸儀都有數(shù)字讀出器。讀數(shù)可以通過現(xiàn)場人員手動(dòng)記錄或存儲到電子數(shù)據(jù)記錄儀,然后下載到個(gè)人電腦。電子延伸儀可以鏈接到一個(gè)報(bào)警系統(tǒng)。當(dāng)讀數(shù)超過一定的預(yù)設(shè)限制,可設(shè)置報(bào)警自動(dòng)關(guān)機(jī),提醒坑失穩(wěn)的潛在危險(xiǎn)。在正常情況下,這個(gè)工作很容易,但有時(shí)由于落石,鳥類或野生動(dòng)物也會(huì)引發(fā)事故。另一個(gè)問題是在坡頂裂縫
14、監(jiān)測時(shí),該運(yùn)動(dòng)已經(jīng)發(fā)生了。額外的裂縫,通過地面松動(dòng)將有可能削弱整個(gè)區(qū)域,同時(shí)也會(huì)導(dǎo)致測量不準(zhǔn)確。然而,在界定表面或內(nèi)部的坑[5]點(diǎn)與點(diǎn)之間的相對運(yùn)動(dòng)時(shí),延伸儀的使用是很經(jīng)濟(jì)和非常有效的。</p><p><b> 地下測量</b></p><p> 這包括水壓機(jī)及傾角水壓計(jì)。根據(jù)文獻(xiàn)[8],露天礦周圍巖石中地下水的存在可對邊坡的穩(wěn)定性產(chǎn)生不利影響。因此,宜不斷監(jiān)測
15、地下水水位,以及孔隙水壓力,以助于評價(jià)邊坡穩(wěn)定性[5]。水壓計(jì)是用來測量孔隙水壓力,同時(shí)也是保證礦山排水監(jiān)測方案的有效性寶貴的工具,。 [9]已證實(shí)超孔隙壓力,尤其是在地下水滲入會(huì)造成邊坡失穩(wěn)。</p><p> 水壓力的計(jì)算或測量是一個(gè)工地勘測穩(wěn)定性的重要組成部分研究。水壓力的信息對斜坡設(shè)計(jì)和安全維護(hù)是至關(guān)重要的。傾斜儀。傾斜儀用于監(jiān)視斜坡和滑坡區(qū)的運(yùn)動(dòng)和確定是否是恒定或加速的運(yùn)動(dòng),來作出補(bǔ)救措施。換句話說,
16、他們測量土壤或巖石的地下側(cè)向位移。一個(gè)測斜儀是由一個(gè)放置在地面上穿過預(yù)期運(yùn)動(dòng)區(qū)域的套管組成。</p><p> 套管的一端是固定,這樣可計(jì)算橫向剖面的位移。套管的兩側(cè)都有切槽,目的是對敏感部位跟蹤。該套管的變形和圍巖測量通過測定沿裝置的長邊上的各點(diǎn)敏感部位的傾斜量。 [10]表示,從收集到的關(guān)于傾斜儀資料可用于下列各項(xiàng):1)找到剪切帶;2)確定是否是平面的剪切或旋轉(zhuǎn)的;3)確定是否沿剪切帶運(yùn)動(dòng)是不變的,加速,或
17、減速。</p><p> 遠(yuǎn)程監(jiān)測技術(shù)。這些措施包括時(shí)域反射計(jì)(TDR),以及掃描儀和雷達(dá)(合成孔徑雷達(dá),邊坡穩(wěn)定性雷達(dá),運(yùn)動(dòng)及檢驗(yàn)雷達(dá))。</p><p> 時(shí)域反射計(jì)(TDR)。時(shí)域反射儀是一種新的來監(jiān)測斜坡運(yùn)動(dòng)方法[11 -14]。最初開發(fā)用于通信和電力線路的斷裂故障。 TDR是用來定位和監(jiān)測邊坡失穩(wěn)。該技術(shù)采用同軸電纜和電纜測試儀。TDR的基本原理類似于雷達(dá)的。電纜測試儀通過鉆
18、孔內(nèi)的同軸電纜發(fā)送了一個(gè)脈沖,當(dāng)脈沖遇到電纜斷裂或同軸電纜的變形,它將會(huì)被反映。反射在電纜信號時(shí)顯示為一個(gè)“尖脈沖”。相對的規(guī)模,位移變化速度和變形區(qū)的位置可以即時(shí),準(zhǔn)確地確定。脈沖信號的大小隨著運(yùn)動(dòng)規(guī)模變化。 筆記本電腦連接到測試儀,電纜信號被記錄到光盤以便于今后參考。[15]鑒于TDR的使用大大增加,針對傳統(tǒng)的測斜儀其優(yōu)點(diǎn)如下:</p><p> 降低安裝成本:電纜相對于傾斜儀套管成本節(jié)約2%至38%。&l
19、t;/p><p> 孔的深度較深:由于設(shè)備的重量較大,傾斜儀在深孔測量時(shí)需要特殊的絞車和電纜。所有TDR監(jiān)測設(shè)備都在表面;</p><p> 快速和遠(yuǎn)程監(jiān)控:TDR數(shù)據(jù)可以通過遠(yuǎn)程通訊傳輸,[16]間隔性的記錄和掃描可進(jìn)行遠(yuǎn)程操控來檢驗(yàn)區(qū)域利益。</p><p> 快速的變形確定:任何地點(diǎn)的運(yùn)動(dòng)都可以立即使用TDR。減少額外的數(shù)據(jù)一般是沒有必要的,電纜可用于量化巖
20、層移動(dòng)以及區(qū)分剪切和張力[17];</p><p> 復(fù)雜的監(jiān)測情況:TDR的電纜已被安裝在傾斜鉆孔,并已監(jiān)測上移動(dòng)區(qū)下面的深區(qū)。在安裝上已經(jīng)取代了傳統(tǒng)的測斜儀。</p><p> 掃描儀和雷達(dá).通過在露天礦每一個(gè)潛在的故障塊一個(gè)接一個(gè)地設(shè)立邊坡監(jiān)測點(diǎn)是不實(shí)際的,而新的一種激光掃描測距儀已經(jīng)解決了大面積運(yùn)動(dòng)檢測這個(gè)問題。無反射棱鏡掃描儀生成了一種新的礦山邊坡數(shù)字模型。這項(xiàng)工作[18]告
21、訴我們位移是如何通過比較連續(xù)掃描儀檢測的。激光掃描儀是一個(gè)獨(dú)立有效的測量工具。它可以產(chǎn)生在測量過程所需要的光。</p><p> 一個(gè)現(xiàn)代化的掃描儀稱為SiteMonitor(圖2)是由三維激光測繪有限公司,英國最初監(jiān)測南威爾士的老煤礦,來測量邊坡的穩(wěn)定。最近,該系統(tǒng)正在更廣泛地應(yīng)用在采礦業(yè)。它記錄了小到可達(dá)10毫米到1000米的斜坡表面的運(yùn)動(dòng)。它記錄和分析在一個(gè)斜坡剖面的詳細(xì),準(zhǔn)確,連續(xù)的高達(dá)每秒8000記錄
22、測量。</p><p> AngloPlatinum,世界上最大的鉑金生產(chǎn)商已采用SiteMonitor進(jìn)行礦山邊坡監(jiān)測。該系統(tǒng)是專為自動(dòng)和手動(dòng)測量其表面,工作距離在50毫米2500米之間。該系統(tǒng)在該公司在巖土小組確定的地點(diǎn)進(jìn)行連續(xù)的24小時(shí)的遠(yuǎn)程掃描,每天收集測量點(diǎn)數(shù)百個(gè)。激光掃描儀利用三維激光測繪有限公司網(wǎng)站監(jiān)控軟件來收集點(diǎn)數(shù)據(jù)并分析處理。軟件在基地測量時(shí)可以通過對比讀數(shù)來檢查地表移動(dòng)或斜坡變形。新型激光掃
23、描技術(shù)還幫助南非庫博鐵礦石提高開采鐵礦的安全性。 SiteMonitor同樣用在德比爾斯公司南非金伯利鉆石礦進(jìn)行高精度斜坡測量,同時(shí)可幫助確定在坑墻壁的潛在故障。</p><p> 在測量技術(shù)上,激光掃描儀在記錄巖石結(jié)構(gòu)變化時(shí)是困難和耗時(shí)的。在邊坡監(jiān)測調(diào)查方法上激光掃描儀的優(yōu)點(diǎn)是:1)在通常的調(diào)查使用中它不需要棱鏡;2)爆破作業(yè)時(shí)沒有棱鏡丟失的問題3)在棱鏡安裝過程中沒有安全風(fēng)險(xiǎn); 4)大量點(diǎn)迅速進(jìn)行監(jiān)控,而不
24、是單棱鏡的測量;5)安裝位置不需要固定;6)在進(jìn)入受到限制時(shí),系統(tǒng)因其便攜性可分為多部分,7最大可覆蓋為2500m。</p><p><b> 結(jié)論</b></p><p> 除了外觀檢查,常規(guī)監(jiān)測設(shè)備如調(diào)查系統(tǒng)經(jīng)緯儀和反射棱鏡站,延伸儀,傾斜儀,水壓計(jì)只提供一個(gè)單一的站點(diǎn)的信息,最多只有很少數(shù)量的位置。如果被監(jiān)視的站點(diǎn)分布太廣或站點(diǎn)之間如果發(fā)生位移,一個(gè)邊坡失穩(wěn)
25、的早期跡象可能被忽視。再加上這是事實(shí),這些常規(guī)監(jiān)測工具難以安裝在許多露天礦陡高墻壁的地方和在工作臺階上缺少工作臺難以安置。</p><p> 監(jiān)測設(shè)備搬遷位置是昂貴的,費(fèi)時(shí)的,在不穩(wěn)定斜坡是危險(xiǎn)的??ㄜ嚭推渌_采車輛的干擾信號,可引起位移測量的階躍變化,煩擾用戶,使自動(dòng)報(bào)警困難。此外,巖壁植被減少了該位置的位移測量精度,困擾用戶,使得在其他測量工作時(shí)缺乏信心。</p><p> 激光掃
26、描儀將是一個(gè)的解決了傳統(tǒng)技術(shù)的不足之處的途徑,但它同樣都有自己的缺點(diǎn)。為有效地掃描文檔并處理所需的時(shí)間過大。此外,這些系統(tǒng)的范圍和精度,因巖石的反射率的差異、巖石面的角度、天氣、植被等因素大大削弱了。</p><p> 邊坡監(jiān)測雷達(dá)在異常檢測和校正模塊時(shí),邊坡監(jiān)測系統(tǒng)包括:大氣校正模塊,可校正用于大氣變化;擾動(dòng)檢測模塊,當(dāng)在斜坡運(yùn)動(dòng)測量時(shí),測量誤差導(dǎo)致的干擾識別引起的。</p><p>
27、 傳統(tǒng)方法的錯(cuò)誤引起的遮蓋地區(qū)適當(dāng)?shù)母蓴_檢測模塊。另一種形式,微衛(wèi)星的發(fā)明提供了一個(gè)錯(cuò)誤處理的方法,專為處理干涉信號的邊坡監(jiān)測系統(tǒng),包括如下步驟:提取干涉雷達(dá)測量的不正常運(yùn)動(dòng),糾正在大氣條件變化下的運(yùn)動(dòng)數(shù)據(jù),糾正異常運(yùn)動(dòng)中的數(shù)據(jù),同時(shí)顯示由于干擾的校正數(shù)據(jù)數(shù)據(jù)和干擾影響的地區(qū)。邊坡監(jiān)測雷達(dá)是一種先進(jìn)設(shè)備,最新技術(shù)的出現(xiàn),完全改變了露天礦巖土工程風(fēng)險(xiǎn)管理。</p><p><b> 英文原文:<
28、/b></p><p> Surface Mine Slope Monitoring Techniques</p><p> Kayode S. Osasana,b and Thomas B. Afenia,b</p><p> Abstract:Excavation of rock initiates a reaction of movements i
29、n the rock mass. if this movement, which is a precursorto mine slope failure is timely and accurately monitored, accidents, destruction of equipment, loss of ore reserves, closure of the mine and sometimes loss of life t
30、hat are the resultant effects of surface mine slope failure will be averted. Laser scanner, total station, crack meter, visual inspection, sirovision and lately monitoring radar are some of the techniques that have be<
31、;/p><p> Introduction</p><p> Mining activities whether by open pit or underground methods bring about volumetric as well as stress and strain changes in the rock mass around a mine opening. Once
32、 deformation exceeds the limits controlled by the rock strength, instability is created around the mining excavation [1]. The most important slope stability management tool has to do with a good laid down slope monitorin
33、g arogram. The work [1] also defined slope stability monitoring as the recording of the stability of the rocks maki</p><p> The main reasons for monitoring the stability of slopes as stated by [1] are:</
34、p><p> (1)to verify mine design. In this case slope monitoring measurements can be used as a basis for maintaining, steepening or reducing slope angles with the resultant economic and safety benefits. Slope mo
35、nitoring measurements can also be used as a basis for future mine design;</p><p> (2) to give technical assurance to production and management officials on the stability status of theo pen pit mine;</p&g
36、t;<p> (3) to serve as a warning system as to which areas of the pit are unstable;</p><p> (4) to give measurements of rates of movement in the unstable zone;</p><p> (5) to serve as a
37、 major slope stability risk management tool. Since slope failure can have serious</p><p> economic consequences on an open pit mine, slope monitoring is an essential basis for making management decisions fo
38、r the safety of workers and equipment e.g. not working below an unstable area, adopting special blasting precautions or evacuation.</p><p> It is stated in [3] that the three main objectives of a slope moni
39、toring program are to: maintain safe operational practices; provide advance notice of instability; provide additional geotechnical information regarding slope behavior.</p><p> Slope Monitoring Steps</p&
40、gt;<p> Slope monitoring process normally constitutes five steps. It starts with monitoring requirements.</p><p> This is to establish the objectives, need, advantages (both economic and safety adva
41、ntages), researching historic problems as case studies and finally preparing a report to decision-makers motivating the need for monitoring and identifying the benefits that can be expected [4]. The second step is to est
42、ablish the project requirements, which follows from the pit design and a risk assessment. The outcome of this will state the probability of failure and the variables that will most likely contribu</p><p> T
43、he fifth and final step is interpretation and reporting of monitoring data. The reporting of results and documenting of events, decisions, design changes and cost-benefit analysis complete the monitoring process. </p&
44、gt;<p> Surface Measurement </p><p> The surface measurement involves some techniques among which are: survey network and tension crack mapping. </p><p> Survey Network. A survey netwo
45、rk consists of target prisms placed on and around areas of anticipated instability on the pit slopes with one or more control points for survey stations. These stations need to be located close enough to the pit crest so
46、 that all prisms can be readily seen; the stations must also be located on completely stable ground. Electronic total station located at a monitoring station (established inside a small hut) built for such purpose, measu
47、res the angles and distances f</p><p> Data collected by the total station is transmitted by radio from the pit edge to the survey office where a computer fitted with appropriate software is located. Data c
48、ome into the computer as survey coordinates of the individual prism targets. Correction for atmospheric variations is made by incorporating data collected by a combined temperature/atmospheric pressure transducer. Change
49、s that have occurred with respect to the original position of the slope monitoring targets are calculated by the </p><p> Tension Crack Mapping. The formation of cracks at the top of a slope is an obvious s
50、ign of instability. Measurement and monitoring the changes in crack width and direction of crack propagation is required to establish the extent of the unstable area. Existing cracks should be painted or flagged so that
51、new cracks can be easily identified on subsequent inspections. Measurements of tension cracks may be as simple as driving two stakes on either side of the crack and using a survey tape or rod to m</p><p> A
52、nother common method for monitoring movement across tension cracks is with a portable wireline extensometer. The most common setup is comprised of a wire anchored in the unstable portion of the ground, with the monitor a
53、nd pulley station located on a stable portion of the ground behind the last tension crack. The wire runs over the top of a pulley and is tensioned by a weight suspended from the other end. As the unstable portion of the
54、ground moves away from the pulley stand, the weight will mo</p><p> Most of the extensometers currently in use have a digital readout. Readings can be taken manually by site personnel or can be stored in an
55、 electronic data logger and then downloaded to a personal computer. Electronic extensometers can be linked to an alarm system. When reading exceeds a certain preset limit, an alarm can be set off automatically to warn of
56、 the potential danger of pit failure. Under normal conditions, this works very well but they can be accidentally triggered by falling rocks, b</p><p> Subsurface Measurement </p><p> This enco
57、mpasses piezometers and inclinometers Piezometers. According to [8], the presence of ground water within the rock mass surrounding an open pit can have a detrimental effect upon the stability of the slope. Therefore, it
58、is expedient to constantly monitor groundwater levels as well as pore pressure to assist in the assessment of slope stability [5]. Piezometers are used to measure pore pressures and also serve as valuable tools for monit
59、oring the effectiveness of mine dewatering programs</p><p> Measurement or calculation of water pressure is an important part of site investigation for stability studies. Information on water pressures is e
60、ssential for designing and maintaining safe slopes.</p><p> Inclinometers. Inclinometers are used to monitor slopes and landslide to detect zones of movement and establish whether movement is constant, acce
61、lerating or responding to remedial measures. In other words, they measure the subsurface lateral displacement of soil or rock. An inclinometer consists of a casing that is placed in the ground through the area of expecte
62、d movements.</p><p> The end of the casing is assumed to be fixed so that the lateral profile of displacement can be calculated. The casing has grooves cut on the sides that serve as tracks for the sensing
63、unit. The deflection of the casing and hence the surrounding rock mass are measured by determining the inclination of the sensing unit at various points along the length of the installations. [10] stated that the informa
64、tion collected from inclinometers can be used for the followings: 1) Locate shear zones; 2) Det</p><p> Time Domain Reflectometry (TDR). Time domain reflectometry is a new approach to monitoring slope movem
65、ent [11 – 14]. Originally developed to locate breaks and faults in communication and power lines. TDR is used to locate and monitor slope failures. The technology uses coaxial cable and a cable tester. The basic principl
66、e of TDR is similar to that of radar. The cable tester sends an electrical pulse down a coaxial cable grouted in a borehole, when the pulse encounters a break or deformation in t</p><p> (1)lower cost of in
67、stallation: cable cost 2 to 38% less than inclinometer casing;</p><p> (2)deeper hole depth possible: Inclinometers in deep hole require special winches and cables due to the extreme weight of the equipment
68、. All TDR monitoring equipment are at the surface;</p><p> (3)rapid and remote monitoring possible: TDR data can be transmitted via telecommunications,[16] and scanning coupled with recording intervals can
69、be programmed remotely to examine zones of interest;</p><p> (4)immediate deformation determinations: Locations of any movement are determined immediately using TDR. Additional data reduction is generally n
70、ot necessary and the cables can be used to quantify rock movement as well as distinguish shear and tension [17];</p><p> (5) complex monitoring situations: TDR cables have been installed in angled boreholes
71、 and have monitored deep zones below moving upper zones. Neither installation could have been done with traditional inclinometer.</p><p> Scanners and Radars. Point by point monitoring of every potential fa
72、ilure block on a mine slope is not practical, but a new generation of scanning laser rangefinders has partially addressed this undersampling problem by detecting movement over large areas. Scanners generate digital model
73、s of mine slopes without reflector prisms. The work [18] explained how displacement can be detected by comparing successive scan. The laser scanner is an active self-contained measurement technology. It generates</p&g
74、t;<p> A modern scanner called SiteMonitor (Fig. 2) was developed by 3D Laser Mapping Ltd, UK initially for monitoring slope stability on old coal mine waste tips in South Wales, UK. Recently, the system is being
75、 adopted more widely in the mining industry. It records movements in the slope surface as small as 10mm with a distance range of up to 1000m. It records and analyses up to 8,000 measurements per second to create a detail
76、ed, accurate and continuous record of the slope profile.</p><p> AngloPlatinum, the world largest producer of platinum has adopted the SiteMonitor for slope monitoring at some of its mines. The system is sp
77、ecifically designed for automatic and manual long ange profiling of surfaces, operating at distances up to 2,500 meters with accuracy of 50 millimeters. The systems perform continuous, remote scanning for 24 hours at loc
78、ations determined by the company’s Geotechnical team, collecting hundreds of point measurement daily. The point cloud data collected by the</p><p> Laser scanning records changes in rock structure that woul
79、d be difficult and time consuming to detect using surveying techniques. The advantages of laser scanning over the survey method of slope monitoring are: 1) it doesn’t require the use of prism as commonly use in surveys;
80、2) there is no problem of prism getting lost during blasting operations; 3) there is no safety risk during prism installation; 4) thousand of points are monitored rapidly rather than single prism location; 5) no need for
81、 f</p><p> Conclusion</p><p> Apart from visual inspection, conventional monitoring equipment such as survey system theodolite and total station with reflecting prism, extensometers, inclinome
82、ters, piezometers provide information only for a single site, or at most, a small number of locations in the mine. If the monitored sites are too widely separated or if displacement occurs between sites, early indication
83、s of a pending slope failure might go unnoticed. Coupled with this is the fact that these conventional monitoring tool</p><p> Relocating monitoring equipment from location to location is costly, time consu
84、ming and could be dangerous on unstable slopes. Disturbing signals from trucks and other mining vehicles can cause step changes in the displacement measurements, confusing the user and making automatic alarming difficult
85、. Furthermore, Vegetation on the rock face reduces the accuracy of the displacement measurements for that location, confusing the user and reducing confidence in the rest of the measurements.</p><p> Laser
86、scanner would have been a likely solution to the deficiencies of the conventional techniques but it equally comes with its own disadvantages. The time required in processing of the scan document is too great for effectiv
87、eness. In addition, the range and accuracy of these systems can be greatly impaired by differences in the reflectivity of the rock, the angle of the rock face, weather, vegetation and other factors.</p><p>
88、 The slope monitoring radar invention resides in anomaly detection and correction module for a slope monitoring system comprising: an atmospheric correction module that corrects slope movement measurements for anomalies
89、caused by atmospheric changes and a disturbance detection module that identifies disturbances that cause errors in the slope movement measurements.</p><p> The disturbance detection module suitably masks re
90、gions affected by the errors of the conventional methods. In another form, the invention of the SSR resides in a method of error handling in interferometric signal processing for a slope monitoring system including the s
91、teps of: extracting uncorrected movement data from interferometric radar measurements, correcting the movement data for changes in atmospheric conditions, identifying disturbances in the corrected movement data and displ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 露天礦邊坡
- 畢業(yè)設(shè)計(jì)--露天礦邊坡監(jiān)測設(shè)計(jì)
- gps―rtk露天礦邊坡監(jiān)測系統(tǒng)的研究
- 露天礦邊坡監(jiān)測信息管理系統(tǒng).pdf
- 露天礦邊坡管理辦法(一)
- 露天礦邊坡變形監(jiān)測與預(yù)測預(yù)報(bào)系統(tǒng)研究.pdf
- 露天礦邊坡動(dòng)力穩(wěn)定性研究.pdf
- 勝利露天礦邊坡變形監(jiān)測與有限元分析.pdf
- 露天礦邊坡開挖過程的變形特征的研究畢業(yè)論文外文翻譯
- gb 51214-2017 煤炭工業(yè)露天礦邊坡工程監(jiān)測規(guī)范
- 露天礦高邊坡鉆孔采礦法的參數(shù)研究
- 基于北斗衛(wèi)星系統(tǒng)的露天礦邊坡位移監(jiān)測系統(tǒng)研究.pdf
- 平莊西露天礦頂幫邊坡監(jiān)測預(yù)警系統(tǒng)研究.pdf
- 大型露天礦邊坡開挖地表移動(dòng)預(yù)測分析.pdf
- 露天礦邊坡安全的模糊隨機(jī)可靠度分析.pdf
- 基于可靠度理論的露天礦邊坡風(fēng)險(xiǎn)分析.pdf
- 露天礦邊坡變形灰色系統(tǒng)預(yù)報(bào)模型研究.pdf
- 現(xiàn)代監(jiān)測手段在黑岱溝露天礦邊坡中的應(yīng)用研究.pdf
- gb 51016-2014 非煤露天礦邊坡工程技術(shù)規(guī)范
- 蘭伯特角露天礦邊坡穩(wěn)定性分析及邊坡角優(yōu)化研究.pdf
評論
0/150
提交評論