資金的時間價值與風險分析_第1頁
已閱讀1頁,還剩61頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、資金的時間價值與風險分析,§2.1 基本概念,§2.2 單利與復利,§2.3 年金的計算,§2.4 名義利率與實際利率,,,資金的時間價值 是指一定量的資金在不同時點上具有不同的價值。或資金在周轉使用中由于時間因素形成的差額價值。,§2.1 基本概念,第一節(jié) 資金時間價值,比如,一筆資金存入時是100萬,一年后取出時變成了102萬,那么這個增加的了2萬元就是存入資金100萬元在

2、存入期間的時間價值。,公平的衡量標準:資金的時間價值相當于在沒有風險沒有通貨膨脹條件下的社會平均資金利潤率?! ±?:現(xiàn)在我持有100萬元,有三個投資方案:  1、選擇存款,年利率2%,第一年末價值增值為2萬,即差額為2萬;  2、購買企業(yè)債券,年利率5%,差額為5萬元;  3、選擇購買股票,預期收益率為10%,差額為10萬。,問題:同樣是10萬元,投資方案不同,在一定時期內(nèi)的價值差額也不相同,那么以哪一個為資金時間價值的標準呢

3、,還是另有其標準?,答案:以沒有風險沒有通貨膨脹條件下的社會平均資金利潤率為標準,一般以存款的純利率為準,或者在通貨膨脹率很低的情況下以政府債券(國庫券)利率表示。,二、資金的等值與等值變換,1. 資金的等值:在時間因素作用下,不同時點數(shù)額不等的資金可能具有相同的價值。,2. 資金的等值變換:把某一時點,某一數(shù)額的資金按一定利率換算到指定時點上數(shù)額不等,但具有相等價值的資金的折算過程。,三、幾個重要名詞,1. 現(xiàn)值P:把未來時點上的資金

4、等值地換算為現(xiàn)在時點上資金的價值。,2. 終值F(未來值;將來值):與現(xiàn)有資金等值的未來某一時點上資金的價值。,3. 等年值A(等年金):發(fā)生在多個連續(xù)時點上與某一資金等值且各年數(shù)額相等的資金序列。,4. 貼現(xiàn)(折現(xiàn)):把未來某一時點上的資金換算成等值的現(xiàn)在時點上資金的折算過程。,5. 貼現(xiàn)率i0(折現(xiàn)率):貼現(xiàn)中采用的利率。,四、現(xiàn)金流量與現(xiàn)金流量圖,2. 凈現(xiàn)金流量 = 現(xiàn)金流入 – 現(xiàn)金流出,3. 現(xiàn)金流量圖規(guī)范畫法,練習1:某技

5、術方案,預計初始投資500萬元,一年后投產(chǎn),投產(chǎn)后每年銷售收入250萬元,經(jīng)營費用150萬元,經(jīng)濟壽命為8年,壽命終止時殘值為60萬元,試畫現(xiàn)金流量圖。,,,§2.2 單利與復利,一、單利計算,單利 ––– 只對本金計算利息,即利息不再生息。計息基礎就是本金,每期利息相同。,1. 單利利息,P ––– 本金;i ––– 利率;n ––– 時間。,2. 單利終值,3. 單利現(xiàn)值,二、復利計算,復利 ––– 本金與前一期的利息累

6、計并計算后一期的利息。即利滾利地計算本利和。在不特別說明的情況下,我們都是以復利方式計息。,F = P(1+i)n (2.4)式中:(1+i)n為復利終值系數(shù),簡記為:(F/P, i,n),公式:,1. 復利終值,P = F(1+i)–n (2.5) 式中:(1+i)–n為復利現(xiàn)值系數(shù),簡記為:(P/F, i, n),公式:,2. 復利

7、現(xiàn)值,例2、某人存入銀行15萬,若銀行存款利率為5%,  5年后的本利和?  復利計息終值例3、某人存入一筆錢,希望5年后得到20萬,若銀行存款利率為5%,問,現(xiàn)在應存入多少?,復利終值系數(shù)與復利現(xiàn)值系數(shù)互為倒數(shù)關系,,,§2.3 年金終值與現(xiàn)值的計算,1、年金(A)的含義:一定時期內(nèi)每次等額收付的系列款項。三個要點:等額性、定期性、系列性。2、年金的種類(1)普通年金:每期期末收款、付款的年金。

8、(期數(shù)1~n)(2)即付年金:每期期初收款、付款的年金。(期數(shù)0~n-1)(3)遞延年金:在第二期或第二期以后收付的年金(期數(shù)s+1~n,s為遞延期)(4)永續(xù)年金:無限期(期數(shù)1~∞),一、普通年金 (后付年金),P417,1、普通年金現(xiàn)值,例4:某人現(xiàn)要出國,出國期限為10年。在出國期間,其每年年末需支付1萬元的房屋物業(yè)管理等費用,已知銀行利率為2%,求現(xiàn)在需要向銀行存入多少?,答案:P=A×(P/A,i,n)

9、 =1×(P/A,2%,10) =8.9826  萬元,練習2:某工程一年建成投產(chǎn),壽命10年,每年預計凈收益2萬,若期望投資報酬率是10%,恰好能夠在壽命期內(nèi)收回初始投資。問該工程初始投入的資金是多少?練習3:某企業(yè)租入某設備,每年年末應支付的租金120元,年復利率為10%,則5年內(nèi)應支付的租金總額的現(xiàn)值為多少?,2、年資本回收額,年資本回收額是

10、指在給定的年限內(nèi)等額回收初始投入資本或清償所欠債務的價值指標,年資本回收額的計算是年金現(xiàn)值的逆運算,公式:年資本回收額   年金額=現(xiàn)值×普通年金現(xiàn)值系數(shù)的倒數(shù)      A = P ×(A/P,i,n),例5:某企業(yè)借得1000萬的貸款,在10年內(nèi)以年利率12%等額償還,則每年應付的金額為多少?,解: A = P ×(A/P,i,n)    =1000 ×(A/P,12

11、%,10) =1000/5.6502   ?。?77(萬元),3、普通年金終值,P414,例6:某人每年年末存入銀行1萬元,一共存10年,已知銀行利率是2%,求終值。,普通年金終值   終值=年金額×普通年金終值系數(shù)   F=A×(F/A,i,n) =1 ×(F/A,2%,10 ) =10.95,練習4:某企

12、業(yè)欲積累一筆福利基金,用于3年后建造職工俱樂部。此項投資總額為200萬元,銀行利率為12%,問每年末至少要存款多少?,4、年償債基金,年償債基金是指為使年金終值達到既定金額,每年應付的年金數(shù)額,年償債基金的計算實際上等于年金終值的逆運算。公式:簡記為: A = F ×(A/F,i,n),例7: 設某人在未來三年內(nèi)每年能收到¥1000,假定年金的銀行利率為8%,①問此人三年中共獲得多少錢(時點為第三年末)?②此人收入的

13、現(xiàn)值是多少?,0 1 2 3 4,S ¥1000 ¥1000 ¥1000,1080,1166,F=(1000)(F/A,8%,3)=(1000)(3.245)=¥3246,①,,,,,,,,,,,,0 1

14、 2 3 4,S ¥1000 ¥1000 ¥1000,¥926 857 794,P=1000(P/A,8%,3)=1000(2.577)=¥2577,②,,,,,,,,,,,,,,練習5 :假設某企業(yè)有一筆4年后到期的借款,到期為1000萬元.若存款年復利率為10%,則為償還該項借款應建立的償債基金應為多少

15、?,二、預付年金 (即付年金),––– 支付出現(xiàn)在每期期初的年金。,1. 預付年金終值,0 1 2 3 4,S ¥1000 ¥1000 ¥1000,1080,1166,普通年金,(1000)(F/A, 8%,3)=(1000)(3.246)=¥3246,,,,,,,,

16、,,,0 1 2 3 4,¥1000 ¥1000 ¥1000,1080,1166,1260,先付年金,(1000)(F/A,8%,3)(1.08)=(3246)(1.08)=¥3506,,,,,,,,,,,,例8:每期期初存入1萬元,時間為3年,年利率為10%,終值為多少?,方法一、在0

17、時點之前虛設一期,假設其起點為0′,于是可以將這一系列收付款項看成是0′~2之間的普通年金,將年金折現(xiàn)到第二年年末,然后再將第二年末的終值折到第三年年末。,方法二、在第三年末虛設一期存款,使其滿足普通年金的概念,然后將這期存款扣除。,練習6 :某學生在大學四年學習期間,每年年初從銀行借款2000元以支付學費,若按年利率6%計復利,第四年末一次歸還全部本息需要多少錢?練習7:某企業(yè)租用一設備,在10年中每年年初要支付租金5000元,年利

18、率為8%,問這些租金的現(xiàn)值是多少?,可利用“普通年金現(xiàn)值系數(shù)表查得 n–1期的值,再求之。,2. 預付年金現(xiàn)值:,預付年金現(xiàn)值,普通年金,0 1 2 3 4,¥1000 ¥1000 ¥1000,S,¥926 875 794,2577=(1000)(P/A,8%,3)=(100

19、0)(2.577),,,,,,,,,,,,,先付年金,0 1 2 3 4,¥1000 ¥1000 ¥1000,926857,2783=(1000)[ (P/A,8%,2)+1]=(1000)(1.783+1),,,,,,,,,,,上例:  方法1:看出是一個期數(shù)為3的普通年金,然后乘

20、以(1+i)。  P=A×(P/A,i,n)×(1+i) ?。?×(P/A,10%,3)×(1+10%) ?。?.4869×1.1=2.7591   方法2:首先將第一期支付扣除,看成是2期的普通年金,然后再加上第一期支付?! =A×(P/A,i,n-1)+A ?。紸×[(P/A,i,n-1)+1]    =A×[(P/A,10%,

21、2)+1]   ?。?×(1.7591+1)=2.7591  我們在計算即付年金時為了利用普通年金現(xiàn)值和終值系數(shù),必須將即付年金形式轉化為普通年金形式。  即付年金與普通年金期數(shù)、系數(shù)的變動關系  即付年金終值系數(shù)與普通年金終值系數(shù):期數(shù)+1,系數(shù)-1即付年金現(xiàn)值系數(shù)與普通年金現(xiàn)值系數(shù):期數(shù)-1,系數(shù)+1,三、遞延年金,––– 支付出現(xiàn)在若干期以后的某個時間段的年金。,0,1,2,……,

22、n,練習8:某企業(yè)向銀行借入一筆款項,利率為8%,銀行規(guī)定10年不用還本付息,但從第11年至第20年每年年末還本付息1000元,問這筆款項的現(xiàn)值應為多少?,例10:某公司想使用一辦公樓,現(xiàn)有兩種方案可供選擇。 方案一、永久租用辦公樓一棟,每年年初支付租金10萬,一直到無窮?!》桨付?、一次性購買,支付120萬元。 目前存款利率為10%,問從年金角度考慮,哪一種方案更優(yōu)?,練習9:某部門欲建一永久性希望工程助學金,每年計劃提100 0

23、00元助學金,利率為10%,現(xiàn)在應存入多少錢?,例11、某項永久性獎學金,每年計劃頒發(fā)50000元獎金。若年復利率為8%,該獎學金的本金應為(?。┰?。,五、混合現(xiàn)金流 各年收付不相等的現(xiàn)金流量。  例12、某人準備第一年存1萬,第二年存3萬,第三年至第5年存4萬,存款利率5%,問5年存款的現(xiàn)值合計(每期存款于每年年末存入),存款利率為10%。,年金小結,普通年金終值,先付年金終值,復利終值,F = P(1+i)n=(F/P

24、,i,n),年金小結,普通年金現(xiàn)值,(P/A,i ,n)——年金現(xiàn)值系數(shù)。,預付年金現(xiàn)值,遞延年金現(xiàn)值,永續(xù)年金現(xiàn)值,六、時間價值計算的靈活運用 (一)知三求四的問題:給出四個未知量中的三個,求第四個未知量的問題。四個變量:現(xiàn)值、終值、利率、期數(shù)?!±?3:企業(yè)年初借得50000元貸款,10年期,年利率12%,每年末等額償還。已知年金現(xiàn)值系數(shù)(P/A,12%,10)=5.6502,則每年應付金額為(  )元。A

25、.8849   B.5000 C.6000     D.28251,求利率、求期限(內(nèi)插法的應用)  內(nèi)插法應用的前提是:將系數(shù)之間的變動看成是線性變動?! ±?4、有甲、乙兩臺設備可供選用,甲設備的年使用費比乙設備低500元,但價格高于乙設備2000元。若資本成本為10%,甲設備的使用期應長于(?。┠辏x用甲設備才是有利的。,答案:2000=500×(P/A,10%,n)  (P/A,10%,n

26、)=4   期數(shù)   年金現(xiàn)值系數(shù)   6 4.3553   N 4   5  

27、 3.7908  (內(nèi)插法應用的原理圖)(n-5)/(6-5)=(4-3.7908)/(4.3553-3.7908)   n=5.4,例15:現(xiàn)在向銀行存入20000元,問年利率i為多少時,才能保證在以后9年中每年得到4000元本利。,答案:20000=4000×(P/A,i,9)   (P/A,i,9)=5  

28、 利率   系數(shù)   12% 5.328  i 5   14%   4.946  (i-12%)/(14%

29、-12%)=(5-5.328)/(4.946-5.328)    i=13.7%,,,1. 名義利率 ––– 計息周期利率與付息周期內(nèi)的計息周期數(shù)的乘積,例:付息周期為一年,計息周期為一個月,月利率為1%,則年名義利率 r=1%?12=12%。,2. 實際利率 ––– 將付息周期內(nèi)的利息再生利息的因素考慮在內(nèi)所計算出來的利率。,§2.4 名義利率與實際利率,3. 二者的關系,一年后本利和為,利息,實際利率,(2.

30、13),(二)年內(nèi)計息的問題 在實際生活中通常可以遇見計息期限不是按年計息的,比如半年付息(計息)一次,因此就會出現(xiàn)名義利率和實際利率之間的換算?!嶋H利率與名義利率的換算公式: 1+i=(1+r/m)m其中:i為實際利率:每年復利一次的利率;  r為名義利率:每年復利超過一次的利率   m為年內(nèi)計息次數(shù)?!±?、一項500萬元的借款,借款期5年,年利率為8%,若每半年復利一次,年實際利率會高出名義利率( )

31、。,答案:i=(1+r/m)m-108%=(1+8%/2)2-108%=0.16%  年實際利率會高出名義利率0.16%,練習10:某企業(yè)擬向銀行借款1500萬元,5年后一次還清,甲銀行貸款利率為17%,按年計息;乙銀行貸款年利率為16%,按半年計息一次,問企業(yè)向哪家銀行貸款較為經(jīng)濟?,一、風險的概念與種類1、含義,風險是指某一行動的結果具有多樣性(各項可能的結果是已知的,只是不止這些結果所發(fā)生的概率)。,第二節(jié)  風險分

32、析,風險由風險因素、風險事故和風險損失三個要素構成:(1)風險因素:是指引起或增加風險事故的機會或擴大損失幅度的條件,是事故發(fā)生的潛在原因。包括:實質性風險因素:指增加某一標的風險事故發(fā)生機會或擴大損失嚴重程度的物質條件,是有形的;道德風險因素:指與人的不正當社會行為相聯(lián)系的一種無形的風險事故,如偷工減料、業(yè)務欺詐;心理風險因素:是指由于人的主觀上的疏忽或過失,導致增加風險事故發(fā)生機會或擴大損失程度。(2)風險事故:即風險事

33、件,是使風險造成損失的可能性轉化為現(xiàn)實性的媒介,是損失的直接外在原因。(3)風險損失:指風險事故所帶來的物質上、行為上、關系上以及心理上的實際和潛在的利益喪失。,2、風險的類別(1)按風險傷害的對象分為人身風險、財產(chǎn)風險、責任風險和信用風險;(2)按風險導致的后果分為純粹風險和投機風險;(3)按風險的性質或發(fā)生原因可分為自然風險、經(jīng)濟風險和社會風險;(4)按風險能否備分散可分為可分散風險和不可分散風險;(5)按風險的起源與影

34、響分為基本風險和特定風險,對特定企業(yè)而言,可以將特定風險分為:  經(jīng)營風險:指由于生產(chǎn)經(jīng)營方面的原因給企業(yè)目標帶來不利影響的可能性。它是任何商業(yè)活動都有的風險,如材料供應變化、生產(chǎn)組織不合理等?! ∝攧诊L險:或籌資風險是指由于舉債而給企業(yè)目標帶來不利影響的可能性。是負債籌資帶來的風險。,二、風險衡量   財務管理中所談的風險是指預期收益偏離實際收益的可能性,所以衡量這一偏離程度就需要計算: 1、確定收益的概率分布(各種隨機事件的

35、概率之和等于1,各種隨機事件的概率在0和1之間)  (一般會給出)Ei以及Pi 2、計算期望值,3、計算方差和標準離差 期望值相同的情況下,方差和標準離差越大,風險越大。,標準離差:,方差:,反映預計收益的平均化,不能直接用來衡量風險。,4、計算標準離差率  標準離差率V=σ/  E期望值,期望值相同的情況下,方差越大,風險越大期望值相同的情況下,標準離差越大,風險越大期望值不同的情況下,標準離差率越大,風險越大,

36、比如甲乙兩個方案,甲方案期望值10萬,標準離差是10萬,乙方案期望值100萬,標準離差是15萬。這時如果根據(jù)標準離差來對比,那么可以明顯的看出,乙方案的標準離差要大于甲方案,但二者的期望值不一樣,所以這時候需要進一步計算標準離差利率,并以此來判斷方案選擇。,方案評價問題  (一)從風險評價角度來看:單一方案:計算出來的方案標準離差或者標準離差率與預先設定值進行對比,如果計算出來的值小于等于設定值,那么說明方案的投資風險可接受,反之則

37、不可接受。多方案:  1、投資規(guī)模相等的多方案應選擇標準離差小的方案?! ?、投資規(guī)模不相等的多方案應選擇標準離差率較小的方案。,(二)對于方案的評價,需要權衡期望收益和風險進行選擇,盡量選擇收益高風險小的方案。  例16:某企業(yè)有  A、B兩個投資項目,計劃投資額均為1000萬元,其收益(凈現(xiàn)值)的概率分布如下表:金額單位:萬元  市場狀況    概率   A項目凈現(xiàn)值  

38、B項目凈現(xiàn)值     好  0.2 200 300 一般 0.6 100 100 差 0.2  50   -50   要求:?。╨)

39、分別計算A、B兩個項目凈現(xiàn)值的期望值?!。?)分別計算A、B兩個項目期望值的標準差。 (3)判斷A、B兩個投資項目的優(yōu)劣。,答案: ?。╨)計算兩個項目凈現(xiàn)值的期望值A項目:200×0.2+100×0.6+50×0.2=l10(萬元)B項目:300×0.2+100×0.6+(-50)×0.2=110(萬元),(2)計算兩個項目期望值的標準離差  A項目:=48.99

40、  B項目: =111.36,(3)判斷  A、B兩個投資項目的優(yōu)劣 由于  A、B兩個項目投資額相同,期望收益(凈現(xiàn)值)亦相同,而  A項目風險相對較?。ㄆ錁藴孰x差小于B項目),故A項目優(yōu)于B項目,三、風險收益率  風險收益的表現(xiàn)形式是風險收益率,是指投資者因冒風險投資而要求的超過無風險收益率的額外收益。公式:風險收益率(RR)=風險價值系數(shù)×標準離差率

41、 =bV=RR投資收益率(R)=無風險收益率+風險收益率 =RF+RR  =R      或    R=  RF  +bV,四、風險對策(1)規(guī)避風險。是首選方案。尤其當風險造成的損

42、失不能由項目可能獲得的利潤予以抵消時。(2)減少風險。一是控制風險因素,減少風險的發(fā)生;二是控制風險發(fā)生的頻率和降低風險損害程度。(3)轉移風險。以一定代價將風險轉嫁給他人承擔,以避免可能給企業(yè)帶來的災害性損失。(4)接受風險。計提風險基金如壞賬準備金、存貨跌價準備等。,作業(yè)題一:,某公司為發(fā)展業(yè)務擬訂了三個備選方案,預測各方案在不同實施條件的凈現(xiàn)值和凈現(xiàn)值可能出現(xiàn)的概率,請比較方案。,,,,,,,,,,,實施情況,指 標,A,B

43、,C,1,2,3,4,5,凈現(xiàn)值,概 率,凈現(xiàn)值,概 率,凈現(xiàn)值,概 率,–40,0.1,–40,0,–40,0.1,10,0.2,10,0.3,20,0.2,60,0.4,60,0.5,80,0.3,110,0.2,100,0.1,110,0.3,160,0.1,170,0.1,150,0.1,作業(yè)題二:某公司擬購置一處房產(chǎn),房主提出三種付款方案:分10次支付(1)從現(xiàn)在起,每年年初支付20萬,共200萬元;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論