小學數學概念教學(講座稿)_第1頁
已閱讀1頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1小學數學概念教學小學數學概念教學開化縣園區(qū)小學開化縣園區(qū)小學陳根祥陳根祥一、什么是數學概念一、什么是數學概念數學概念是客觀現實中的數量關系和空間形式的本質屬性在人腦中中的反映。數學的研究對象是客觀事物的數量關系和空間形式。在數學中,客觀事物的顏色、材料、氣味等方面的屬性都被看作非本質屬性而被舍棄,只保留它們在形狀、大小、位置及數量關系等方面的共同屬性。在數學科學中,數學概念的含義都要給出精確的規(guī)定,因而數學概念比一般概念更準確。小學數

2、學中有很多概念,包括:數的概念、運算的概念、量與計量的概念、幾何形體的概念、比和比例的概念、方程的概念,以及統(tǒng)計初步知識的有關概念等。這些概念是構成小學數學基礎知識的重要內容,它們是互相聯系著的。如只有明確牢固地掌握數的概念,才能理解運算概念,而運算概念的掌握,又能促進數的整除性概念的形成。二、小學數學概念的表現形式二、小學數學概念的表現形式在小學數學教材中的概念,根據小學生的接受能力,表現形式各不相同,其中描述式和定義式是最主要的兩種

3、表示方式。1定義式定義式是用簡明而完整的語言揭示概念的內涵或外延的方法,具體的做法是用原有的概念說明要定義的新概念。這些定義式的概念抓住了一類事物的本質特征,揭示的是一類事物的本質屬性。這樣的概念,是在對大量的探究材料的分析、綜合、比較、分類中,使之從直觀到表象、繼而上升為理性的認識。如“有兩條邊相等的三角形叫等腰三角形”;“含有未知數的等式叫方程”等等。這樣定義的概念,條件和結論十分明顯,便于學生一下子抓住數學概念的本質。2描述式用一

4、些生動、具體的語言對概念進行描述,叫做描述式。這種方法與定義式不同,描述式概念,一般借助于學生通過感知所建立的表象,選取有代表性的特例做參照物而建立。如:“我們在數物體的時候,用來表示物體個數的1、2、3、4、5……叫自然數”;“象1.25、0.726、0.005等都是小數”等。這樣的概念將隨著兒童知識的增多和認識的深化而日趨完善,在小學數學教材中一般用于以下兩種情況。一種是對數學中的點、線、體、集合等原始概念都用描述法加以說明。例如,

5、“直線”這一概念,教材是這樣描述的:拿一條直線,把它拉緊,就成了一條直線?!捌矫妗本陀谩罢n桌面”、“黑板面”、“湖面”來說明。另一種是對于一些較難理解的概念,如果用簡練、概括的定義出現不易被小學生理解,就改用描述式。例如,對直圓柱和直圓錐的認識,由于小學生還缺乏運動的觀點,不能像中學生那樣用旋轉體來定義,因此只能通過實物形象地描述了它們的特征,并沒有以定義的形式揭示它們的本質屬性。學生在觀察、擺拼中,認識到圓柱體的特征是上下兩個底面是相

6、等的圓,側面展開的形狀是長方形。一般來說,在數學教材中,小學低年級的概念采用描述式較多,隨著小學生思維能力的逐步發(fā)展,中年級逐步采用定義式,不過有些定義只是初步的,是有待發(fā)展的。在整個小學階段,由于數學概念的抽象性與學生思維的形象性的矛盾,大部分概念沒有下嚴格的定義;而是從學生所了解的實際事例或已有的知識經驗出發(fā),盡可能通過直觀的具體形象,幫助學生認識概念的本質屬性。對于不容易理解的概念就暫不給出定義或者采用分階段逐步滲透的辦法來解決。

7、因此,小學數學概念呈現出兩大特點:一是數學概念的直觀性;二是數學概念的階段性。在進行數學概念教學時,我們必須注意充分領會教材的這兩個特點。三、小學數學概念教學的意義三、小學數學概念教學的意義首先,數學概念是數學基礎知識的重要組成部分。小學數學的基礎知識包括:概念、定律、性質、法則、公式等,其中數學概念不僅是數學基礎知識的3例如,要學習“平行線”的概念,可以讓學生辨認一些熟悉的實例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然后分化出各

8、例的屬性,從中找出共同的本質屬性。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個平面內、兩條邊可以無限延長、永不相交等。同樣可分析出門框和黑板上下邊的屬性。通過比較可以發(fā)現,它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內;彼此間距離處處相等;兩條直線沒有公共點等,最后抽象出本質屬性,得到平行線的定義。以感性材料為基礎引入新概念,是用概念形成的方式去進行教學的,因此教學中應選擇那些能充分顯示被引入概念的特征性質的事例,

9、正確引導學生去進行觀察和分析,這樣才能使學生從事例中歸納和概括出共同的本質屬性,形成概念。2、以新、舊概念之間的關系引入新概念。如果新、舊概念之間存在某種關系,如相容關系、不相容關系等,那么新概念的引入就可以充分地利用這種關系去進行。例如,學習“乘法意義”時,可以從“加法意義”來引入。又如,學習“整除”概念時,可以從“除法”中的“除盡”來引入。又如,學習“質因數”可以從“因數”和“質數”這兩個概念引入。再如,在學習質數、合數概念時,可用

10、約數概念引入:“請同學們寫出數1,2,6,7,8,12,11,15的所有約數。它們各有幾個約數?你能給出一個分類標準,把這些數進行分類嗎?你能找出多種分類方法嗎?你找出的所有分類方法中,哪一種分類方法是最新的分類方法?”3、以“問題”的形式引入新概念。以“問題”的形式引入新概念,這也是概念教學中常用的方法。一般來說,用“問題”引入概念的途徑有兩條:①從現實生活中的問題引入數學概念;②從數學問題或理論本身的發(fā)展需要引入概念。4、從概念的發(fā)

11、生過程引入新概念。數學中有些概念是用發(fā)生式定義的,在進行這類概念的教學時,可以采用演示活動的直觀教具或演示畫圖說明的方法去揭示事物的發(fā)生過程。例如,小數、分數等概念都可以這樣引入。這種方法生動直觀,體現了運動變化的觀點和思想,同時,引入的過程又自然地、無可辯駁地闡明了這一概念的客觀存在性。(二)數學概念的形成引入概念,僅是概念教學的第一步,要使學生獲得概念,還必須引導學生準確地理解概念,明確概念的內涵與外延,正確表述概念的本質屬性。為此

12、,教學中可采用一些具有針對性的方法。1、對比與類比。對比概念,可以找出概念間的差異,類比概念,可以發(fā)現概念間的相同或相似之處。例如,學習“整除”概念時,可以與“除法”中的“除盡”概念進行對比,去比較發(fā)現兩者的不同點。用對比或類比講述新概念,一定要突出新、舊概念的差異,明確新概念的內涵,防止舊概念對學習新概念產生的負遷移作用的影響。2、恰當運用反例。概念教學中,除了從正面去揭示概念的內涵外,還應考慮運用適當的反例去突出概念的本質屬性,尤其

13、是讓學生通過對比正例與反例的差異,對自己出現的錯誤進行反思,更利于強化學生對概念本質屬性的理解。用反例去突出概念的本質屬性,實質是使學生明確概念的外延從而加深對概念內涵的理解。凡具有概念所反映的本質屬性的對象必屬于該概念的外延集,而反例的構造,就是讓學生找出不屬于概念外延集的對象,顯然,這是概念教學中的一種重要手段。但必須注意,所選的反例應當恰當,防止過難、過偏,造成學生的注意力分散,而達不到突出概念本質屬性的目的。3、合理運用變式。依

14、靠感性材料理解概念,往往由于提供的感性材料具有片面性、局限性,或者感性材料的非本質屬性具有較明顯的突出特征,容易形成干擾的信息,而削弱學生對概念本質屬性的正確理解。因此,在教學中應注意運用變式,從不同角度、不同方面去反映和刻畫概念的本質屬性。一般來說,變式包括圖形變式、式子變式和字母變式等。例如,講授“等腰三角形”概念,教師除了用常見的圖形展示外,還應采用變式圖形去強化這一概念,因為利用等腰三角形的性質去解題時,所遇見的圖形往往是后面幾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論