基于沖量權值的ART網絡研究及其在地震預報中的應用.pdf_第1頁
已閱讀1頁,還剩49頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、在神經網絡的競爭學習過程中,自適應諧振理論(Adaptive Resonance Theory,ART)網絡解決了傳統(tǒng)神經網絡的穩(wěn)定性與可塑性之間的矛盾,即在ART網絡的學習過程中,網絡可以穩(wěn)定地學習新知識,也可以對已學習的知識做出很好的處理.值得一提的是,有監(jiān)督ART網絡作為一種有效的分類器,有著成功的應用實例和廣泛的應用前景.本文提出了一種基于沖量權值的ART(Impulse Force Weight based Adaptive

2、Resonance Theory)網絡,其目的是針對現有的有監(jiān)督ART網絡模型中沒有考慮輸入屬性重要性的情況,通過對網絡部分節(jié)點分配沖量權值,然后根據沖量權值對節(jié)點匹配度的作用,體現不同屬性對分類結果的不同影響,提高了預測精度.研究方案中采用了遺傳算法的優(yōu)化機制,對沖量權值迭代優(yōu)化,然后反饋回網絡,用于提高網絡的預測性能.通過與其他有監(jiān)督ART網絡的比較實驗,驗證了基于沖量權值的ART網絡的有效性.根據網絡的結構特點,本文還提出了有效的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論